Принцип работы датчиков давления: схема, устройство, применение
Принцип работы датчиков давления: схема, устройство, применение
В современной промышленности не обойтись без точных приборов измерения, которые служат для учета расхода различных жидкостей, а также газа, газовых смесей и пара. Помимо расходомеров с разными принципами действия, широко применяются электронные датчики давления. Они являются неотъемлемой частью измерительных комплексов, а также входят в состав теплосчетчиков, используются в системах автоматизированного контроля технологических процессов. Данные приборы востребованы в энергетике, пищевой промышленности, нефтяной и газовых отраслях и других сферах производства.
Конструкция преобразователей давления
На рисунке снизу приведена общая схема конструкции преобразователей давления. В зависимости от типа датчика, производителя прибора и особенностей применения, конструкция может меняться. Данная схема предназначена для ознакомления с основными элементами типового измерительного преобразователя давления.
- 1. Кабельный ввод
Эта часть преобразователя давления используется для герметичного ввода электрического кабеля в датчик. Как правило, используется сальниковый ввод типа PG9, но встречаются и другие варианты подсоединения (например PG16, M20x1,5).
2. Клеммы
Клеммы необходимы для физического подключения электрических проводов к датчику. На сегодняшний день подавляющее большинство преобразователей давления используют схему подключения с выходным сигналом .
3. Плата питания / искорзащиты
Данная плата осуществляет распределение электрической энергии между электронными компонентами датчика. У преобразователей во взрывобезопасном исполнении на данной плате реализуется функция искрозащиты. У недорогих датчиков давления (например, PTE5000), как правило, плата питания и преобразовательная плата совмещены.
4. Корпус электроники
Часть датчика давления, в которой расположены плата питания и преобразовательная плата. У преобразователей низкой ценовой категории (WIKA, BD Sensors) корпус электроники и корпус собственно датчика представляют одно целое. Наличие отдельного корпуса для электроники характерно только для высококачественных преобразователей давления (например , EMERSON, VALCOM, YOKOGAWA).
5. Преобразовательная плата
Это одна из самых важных частей преобразователей давления. Данная плата осуществляет преобразование сигнала от первичного сенсора в унифицированный электрический сигнал по току или по напряжению.
6. Корпус датчика
Основная механическая часть, представляющая собой собственно тело преобразователя.
7. Провода и атмосферная трубка
Провода, как правило, представляют собой кабельный шлейф, соединяющий выводы сенсора и преобразовательную плату. Атмосферная трубка используется в датчиках избыточного и вакууметрического давления для осуществления связи чувствительного элемента (сенсора давления) с атмосферным давлением.
8. Технологическое соединение
Эта часть преобразователей давления используется для физического подключения датчика к процессу (к трубопроводу, емкости, аппарату). Наиболее распространенным соединением является резьбовое манометрическое подсоединение G1/2″ по стандарту DIN 16288 и резьба М20х1,5. Также широко встречаются соединения G1/4″, G1″, фланцевые соединения. В пищевой промышленности распространены специальные санитарные соединения, например молочная гайка DIN 11851, , хомуты .
В ассортименте есть специальные преобразователи давления для применения в пищевой (молочной, пивоваренной) промышленности. Это приборы производства — датчики давления серии и интеллектуальные датчики давления серии , которые полностью удовлетворяют всем требованиям пищевой промышленности по гигиене, точности измерений и температурным режимам.
9. Сенсор давления (первичный преобразователь)
Сенсор давления — один из ключевых элементов любого преобразователя давления. Данный элемент непосредственно осуществляет преобразование действующего на него давления в электрический сигнал, который потом унифицируется на преобразовательной плате. На сегодняшний день существует несколько способов преобразования давления в электрический сигнал. В промышленности применяются индуктивный, емкостной и тензорезистивный методы преобразования. Самым распространенным является тензорезистивный.
Данный метод основан на явлении тензоэффекта в металлах и полупроводниках. Тензорезисторы соединенные в мостовую схему (мост Уитстона) под действием давления изменяют свое сопротивление, что приводит к разбалансу моста. Разбаланс прямо пропорционально зависит от степени деформации резисторов и, следовательно, от приложенного давления.
На рынке существует 4 основных типа сенсоров, основанных на тензорезистивном методе преобразования, которые используют все существующие производители преобразователей давления. Рассмотрим каждый тип отдельно.
Датчик перепада давления
(разности или дифференциального давлений) измеряет разность давлений между двумя точками отбора среды, и (или) используется для получения величины расхода жидкости, нефтепродуктов, пара и пр. При измерении давление подается с двух сторон мембраны, а величина выходного сигнала является разностью их значений.
Для обеспечения эффективной работы системы необходимо, чтобы датчик разности давления давал точные показания и длительное время выполнял свои функции, не требуя ремонта или замены. При выборе подходящего сенсора следует учитывать ряд факторов, определяющих рациональность его использования для конкретного процесса:
- уровень точности и чувствительности, которые необходимы во время измерения;
- диапазон давлений;
- среда, в которой будет эксплуатироваться устройство.
Микропроцессорные датчики перепада давления от ЭЛЕМЕР-УФА оснащены емкостными или тензорезистивными сенсорами с металлическими или керамическими мембранами, обладающими высокой стойкостью к перегрузкам, агрессивным средам.
Датчики дифференциального давления имеют широкие диапазоны измерений:
- АИР-10H, АИР-10SH — 0,4 кПа…2,5 Мпа,
- АИР-20/М2-Н, АИР-20/М2-MB, ЭЛЕМЕР-100 — 0,063 кПа…16 МПа,
- ЭЛЕМЕР АИР-30М — 0,025 кПа…10 МПа,
- САПФИР-22ЕМ — 0,16 кПа…16 МПа.
Чтобы уточнить цену датчиков перепада давления в различных исполнениях, обращайтесь к менеджерам компании ЭЛЕМЕР-УФА. Мы поможем оформить код заказа необходимой модели прибора и определим сроки поставки оборудования.
Как проверить электронный датчик давления масла
Чтобы проверить электронный датчик давления потребуется мультиметр и насос (желательно с манометром). Перед началом проверки необходимо снять датчик с автомобиля и перевести мультиметр в режим диагностики цепи «на обрыв». Соедините датчик с насосом и подключите к нему мультиметр. Лучше использовать насос с манометром, чтобы не подать лишнее давление, от которого электронный прибор выйдет из строя.
Объединив насос, манометр и мультиметр, убедитесь, что на шкале стрелка находится в нуле. Далее подайте минимальное давление от насоса, в результате чего на рабочем датчике мембрана должна согнуться, сдвинуть толкатель и цепь разомкнется, что приведет к отклонению стрелки прибора в сторону бесконечности. Также рекомендуется подать давление, приближенное к максимальному, и убедиться в работоспособности датчика в подобном режиме.
Кросс-корреляционные ультразвуковые счетчики
Такие расходомеры работают по методу кросс-корреляции ультразвукового сигнала. Эта методика основана на принципе построения скоростей по различным уровням потока, счетчик дает возможность строить реальную диаграмму распределения скоростей в потоке. Также выполняется замер уровня потока.
С водомерами используются ультразвуковые трубные и клиновидные датчики скорости, устанавливаемые в потоке, уровень жидкости определяется при помощи надводных и подводных датчиков. Возможно исполнение комбинированных датчиков скорости и уровня.
Счетчики используются в напорных и самотечных, открытых и закрытых системах. Это точный метод измерения, дающий достоверные результаты для потоков различной степени загрязненности, в том числе он эффективен в неоднородных средах. Расходомеры используют в технологических трубопроводах, на очистных сооружениях, в реках и водоемах и др. В крупных каналах можно устанавливать несколько датчиков по всей ширине для получения более точных результатов.
Преимущества и недостатки
Особенности конструкции основных элементов управления (катушек обмотки и металлических деталей) обеспечивают чрезвычайную надежность большинства индуктивных датчиков. Учитывая их солидную репутацию, возникает очевидный вопрос: «Почему индуктивные датчики не используются чаще?» Причина в том, что их физическая прочность является одновременно их преимуществом и недостатком. Индуктивные датчики отличаются точностью, надежностью и стабильностью, но при этом являются большими, громоздкими и тяжелыми. Большой расход материала и необходимость тщательной намотки катушек обуславливают дороговизну производства датчиков, особенно высокоточных приборов, требующий прецизионной намотки. Помимо простых бесконтактных датчиков, более сложные индуктивные датчики стоят слишком дорого для использования в широко распространенных коммерческих или промышленных сферах применения.
Другая причина их относительно редкого использования заключается в сложности составления инженерами-конструкторами технических условий. Это связано с тем, что схемы генерации переменного тока и обработки сигналов для каждого датчика необходимо рассчитывать и приобретать отдельно. Для этого обычно требуются глубокие навыки и знания в области аналоговой электроники. Поскольку молодые инженеры стремятся сосредоточиться на цифровой электронике, они рассматривают изучение таких дисциплин как приобретение ненужной квалификации, которую следует избегать.
Автомобильные датчики
Электронные системы управления современного автомобиля немыслимы без датчиков. Автомобильные датчики оценивают значения неэлектрических параметров и преобразуют их в электрические сигналы. В качестве сигнала выступает напряжение, ток, частота и др. Сигналы преобразуются в цифровой код и передаются в электронный блок управления, который в соответствии с заложенной программой приводит в действие исполнительные механизмы.
Датчики бывают активными и пассивными. В активном датчике электрический сигнал возникает за счет внутреннего энергетического преобразования. Пассивный датчик преобразует внешнюю электрическую энергию.
Датчики применяются практически во всех системах автомобиля. В двигателе они измеряют температуру и давление воздуха, топлива, масла, охлаждающей жидкости. Ко многим движущимся частям автомобиля (коленчатый вал, распределительный вал, дроссельная заслонка, валы в коробке передач, колеса, клапан рециркуляции отработавших газов) подключены датчики положения и скорости. Большое количество датчиков используется в системах активной безопасности.
В зависимости от назначения различают следующие типы автомобильных датчиков: положения и скорости, расхода воздуха, контроля эмиссии отработавших газов, температуры, давления.
Датчики положения и скорости
Преобразование линейного или углового перемещения контролируемого объекта в электрический сигнал производится с помощью датчиков положения и скорости. В автомобиле используются датчики положения коленчатого вала, положения распределительного вала, положения дроссельной заслонки, уровня топлива, положения педали акселератора, частоты вращения колеса, угла поворота рулевого колеса.
Датчики положения и скорости выполняются контактными или бесконтактными. Несмотря на то, что предпочтение отдается бесконтактным датчикам, контактные устройства еще широко применяются. При всех достоинствах, контактные датчики имеют один существенный недостаток – склонность к загрязнению и, соответственно, снижение точности измерений.
К контактным датчикам положения относятся потенциометры с подвижными контактами, которые измеряют линейные и угловые перемещения объекта. Подвижные контакты перемещаются по длине переменного резистора и изменяют его сопротивление, пропорциональное фактическому перемещению объекта. Потенциометры широко используются в качестве датчика положения дроссельной заслонки, датчика положения педали газа, объемного расходомера воздуха, датчика уровня топлива и др.
В основу работы бесконтактных датчиков положения и скорости положены различные физические явления и эффекты, и соответствующие им датчики: индуктивные, Виганда, Холла, магниторезистивные, оптические и множество других.
Индуктивный датчик широко используется в качестве датчика положения коленчатого вала. Он содержат постоянный магнит, магнитопровод и катушку. Когда стальной объект (зуб шестерни) приближается к датчику, магнитное поле увеличивается, а в катушке наводится переменное напряжение. В отличие от индуктивных датчиков датчики Виганда не используют постоянный магнит, а активируются внешним магнитом.
Наиболее востребованные бесконтактные датчики построены на эффекте Холла. Суть эффекта заключается в том, что постоянный магнит, связанный с измеряемым объектом, при вращении генерирует напряжение, пропорциональное угловому положению объекта. В датчиках Холла используется несколько схем измерения положения и скорости: вращающийся прерыватель, многополюсный кольцевой магнит, ферромагнитный зубчатый ротор. Для измерения угловой скорости зубчатого ротора применяется дифференциальный датчик Холла – два рядом расположенных измерительных элемента, позволяющих видеть зуб и впадину одновременно.
Магниторезистивные датчики начали применяться сравнительно недавно, но очень популярны. Они построены на магниторезистивном эффекте — свойстве некоторых токонесущих материалов изменять свое сопротивление во внешнем магнитном поле. Различают анизотропные магниторезисторы (АМР) и гигантские магниторезисторы (ГМР). АМР-датчики используют электрическое сопротивление ферромагнитных материалов. Измерительный элемент ГМР-датчика состоит из чередующихся ферромагнитных и немагнитных слоев. Анизотропные магниторезисторы применяются в датчике угла поворота рулевого колеса.
В оптическом датчике для определения углового положения используются светомодулирующий диск с чередующимися прозрачными и непрозрачными секторами. Диск располагается между светодиодом и фоторезистором. При перемещении (повороте) диска на фоторезисторе вырабатываются электрические импульсы, по которым определяется угол и скорость поворота вала.
Датчики расхода воздуха
Расход воздуха, поступающего в двигатель, определяется по объему или массе. Датчики определяющие расход воздуха по объему называют объемными расходомерами. Работа таких датчиков построена на оценке перемещения заслонки, пропорционального величине потока воздуха.
Расход воздуха по массе оценивается датчиком массового расхода воздуха. Наибольшее применение нашли микромеханические расходомеры, построенные на тонкопленочных нагреваемых элементах — терморезисторах. Воздух, проходя через терморезисторы, охлаждает их. При этом, чем больше проходит воздуха, тем сильнее охлаждаются терморезисторы. Определение массового расхода воздуха построено на измерении мощности и тока, необходимых для поддержания постоянной температуры терморезисторов.
Датчики контроля эмиссии отработавших газов
Регулирование содержания вредных веществ в отработавших газах обеспечивают датчики контроля эмиссии, к которым относятся датчик концентрации кислорода и датчик оксида азота.
Кислородный датчик (другое название – лямбда-зонд) устанавливается в выпускной системе и в зависимости от содержания кислорода в отработавших газах вырабатывает определенный сигнал. На основании сигнала система управления двигателем поддерживает стехиометрический состав топливно-воздушной смеси (т.н. лямбда-регулирование).
На современных автомобилях, оборудованных каталитическим нейтрализатором, устанавливается два датчика концентрации кислорода. Кислородный датчик на выходе из нейтрализатора контролирует его работоспособность и обеспечивает содержание вредных веществ в отработавших газах в пределах установленных норм.
Датчик оксидов азота контролирует содержание оксидов азота в отработавших газах. Он устанавливается в выпускной системе бензиновых двигателей с непосредственным впрыском топлива после дополнительного (накопительного) нейтрализатора. Датчик включает две камеры. В первой камере оценивается концентрация кислорода. Во-второй камере происходит восстановление оксидов азота на кислород и азот. Концентрация оксидов азота оценивается по величине восстановленного кислорода.
Датчики температуры
Измерение температуры производится в различных системах автомобиля:
Температуры наружного воздуха;
Температуры воздуха в салоне автомобиля
Для измерения температуры применяются терморезисторы с отрицательным температурным коэффициентом. С увеличением температуры сопротивление термистора снижается, соответственно возрастает ток. В качестве датчика температуры используется также термопара – проводник, состоящий из двух различных металлов и под воздействием температуры генерирующий термоэлектрическое напряжение.
Датчики давления
В современных автомобилях используется большое количество датчиков давления, с помощью которых измеряется давление во впускном коллекторе, давление топлива в системе впрыска, давление в шинах, давление рабочей жидкости в тормозной систем, давления масла в системе смазки.
Для оценки давления применяется пьезорезистивный эффект, который заключается в изменении сопротивления тензорезистора при механическом растяжении диафрагмы. Измеряемое давление может быть абсолютным или относительным. Датчик давления во впускном коллекторе измеряет абсолютное давление, т.е. давление воздуха относительно вакуума.
Представленная классификация охватывает далеко не все автомобильные датчики. Необходимо упомянуть ряд других датчиков: датчик детонации, датчик уровня масла, датчик дождя. Датчик детонации оценивает вибрацию двигателя, которая сопровождает неконтролируемое воспламенение топливно-воздушной смеси. Датчик представляет собой пьезоэлектрический элемент, который при вибрации генерирует электрический сигнал.
Датчик уровня масла в современном двигателе заменяет функции щупа. Уровень масла может измеряться поплавковым переключателем или более совершенным тепловым датчиком, который кроме уровня масла измеряет его температуру. Датчик дождя обеспечивает автоматическую работу стеклоочистителей. Конструктивно он объединен с датчиком освещенности.
Измерение перепада давления
Измерение разности давления используется в системах управления технологическими процессами с конечной целью измерения расхода или уровня. Датчики дифференциального давления наиболее часто применяются для измерения расхода жидкостей, газа и пара. Перепад давления создается на специальных устройствах, среди основных разновидностей которых представлены сужающие устройства (диафрагмы), сопла, трубки и конусы Вентури и пр. Эти устройства преобразуют энергию потока среды в разность давления “на входе” и “на выходе” устройства перепада. Преобразователи измеряют значение разницы давления, квадратный корень которого пропорционален расходу.
Функция корнеизвлечения и преобразования дифференциального давления в расход может выполняться как вторичным устройством, так и самим датчиком давления. Современные цифровые датчики давления способны не только производит пересчет давления в расход, но и работать как счетчик расхода и даже производить температурную коррекцию измеренных значений, исключая таким образом необходимость в отдельном счетном устройстве.
Что такое датчик разности давления?
Это один из наиболее распространенных промышленных контрольно-измерительных приборов, применяемый во всех без исключения отраслях промышленности. Этот преобразователь позволяет измерить разницу в давлении между двумя входными точками и генерировать выходной сигнал, величина которого калибруется в соответствии с измеренным значением.
Измерительные камеры промышленных преобразователей дифференциального давления состоят из двух измерительных каналов. Один из каналов называется Высокий, второй Низкий. При этом не обязательно, что большее значение давления обязательно подается на Высокий канал, а меньшее — на низкий. Итак, с обеих сторон датчика подается давление, которое поступает на чувствительный элемент (сенсор). Сенсор датчика обычно представляет собой мембрану, положение которой отклоняется в зависимости от приложенного давления. Это отклонение преобразуется в электрический с помощью тензодатчика (обычно для датчиков давления низкого уровня) или емкостной ячейки (для промышленных высокопроизводительных датчиков давления).
Сигнал от сенсора передается в электронный блок (преобразователь), где он усиливается и обрабатывается. Обработка включает в себя корректировку сигнала по данным температуры и индивидуальным калибровочным характеристикам сенсора. Функции корректировки могут выполняться аналоговыми схемами или с помощью микропроцессора. После обработки сигнала, электронные блок генерирует пропорциональный электрический сигнал, который передает измеренное значение другим приборам.
Среди аналоговых преобразователей разности давлений наиболее распространенными являются сигналы 0-5В, 0-10В и 4-20мА. Токовый сигнал 4-20 мА, как правило, означает, что нижний диапазон измеряемого давления соответствует 4 мА, а верхний диапазон соответствует 20 мА. Сигнал 4-20мА передается по двухпроводной схеме подключения, при этом на аналоговый сигнал может накладываться цифровой HART сигнал, позволяющий передавать гораздо больше информации, а также проводить удаленную настройку и диагностику датчиков перепада давления. Среди других цифровых сигналов, распространенность получили протоколы Foundation Fieldbus, Profibus, Modbus и пр.
Применение датчиков дифференциального давления
Существует множество вариаций применений датчиков разности давления в промышленности, включая следующие:
- Измерение расхода жидкостей, газа и пара в системах коммерческого и технологического учета.
- Измерение уровня жидкостей в резервуарах.
- Контроль загрязнения фильтров.
- Контроль работы клапанов и управляющих механизмов.
- Управления и мониторинг работы насосного оборудования.
Есть ли разница, например преобразователи перепада давления и преобразователи дифференциального давления?
Преобразователи перепада давления, датчики перепада давления, преобразователи разности давления, датчики разности давления, преобразователи дифференциального давления, датчики дифференциального давления — все это синонимы.
Преобразователь перепада давления SMAR с цифровым выходом предназначен для измерения перепада давления на в трубопроводах, резервуарах и других системах. Преобразователь перепада давления LD поставляется с вентильным блоком и комплектом монтажных частей. Специально разработанный вентильный блок обеспечивает надежную работу преобразователя перепада давления и позволяет проводить корректный пуск, остановку узла измерения перепада давления и контроль «нуля» в процессе эксплуатации.
Преобразователь перепада давления SMAR может монтироваться на арматуру для датчиков давления или может быть вынесен для раздельного монтажа на стене. Отбор давления для преобразователя перепада давления может быть произведен через импульсные линии или бобышку.
Проверка работоспособности. Замена
Видео: Замена РДТ на ваз 2114
Проверить работоспособность узла можно при помощи манометра. И сделать это очень просто. На топливных рампах имеется штуцер сброса давления в системе, который и используется для проверки создаваемого давления в системе.
Для примера, рассмотрим, как проверяется регулятор давления на примере ВАЗ-2110 с инжектором. Все, что потребуется для проверки – это манометр, маслостойкий шланг и два хомута. А далее:
Так выкручивается золотник из штуцера
- Снимаем защитный колпачок со штуцера сброса давления на рампе.
- Аккуратно и неспешно колесным колпачком отворачиваем немного золотник, выжидаем сброса давления и полностью его выкручиваем.
- На штуцер надеваем подготовленный шланг и фиксируем его хомутом.
- Второй конец шланга соединяем с манометром и тоже зажимаем хомутом.
- Заводим двигатель и устанавливаем малые обороты (холостой ход).
- Смотрим на манометр. Если насос, форсунки и фильтр в нормальном состоянии, то показания манометра должны составлять 2,8-3,2 Атм.
- Стягиваем со штуцера вакуумной камеры регулятора патрубок, ведущий к коллектору. Это действие должно сопровождаться повышением давления на 0,2-0,7 Атм.
Если есть хоть какое-то несоответствие, то необходимо искать причину. К примеру, насос не смог обеспечить необходимое давление. И лучше всего начать с регулятора давления, поскольку добраться до него не сложно.
Из инструментов для снятия регулятора на ВАЗ-2110 потребуется ключ на 24 и шестигранник на 5.
Регулятор снимается так:
- Откручиваем ключом на 24 гайку трубки слива бензина в бак.
- Шестигранником выкручиваем два болта крепления элемента.
- Аккуратно его извлекаем.
- Устанавливаем на место новый элемент.
- Делаем замеры давления.
Если после проделанной процедуры показания замеров не улучшились, следует проверять работоспособность остальных элементов системы.
Напоследок отметим, что регуляторы давления топлива используются не только инжекторных моторах. В дизельных агрегатах с системой питания Common Rail он тоже используется. Только в этой системе регулятор – электромагнитный и его работой управляет ЭБУ.