Vdomvse.ru

Ремонт и Стройка

9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вихревые токи

Вихревые токи

Детали из металла у автомобиля или разнообразных электрических устройствах, имеют способность двигаться в магнитном поле и пересекаться с силовыми линиями. Благодаря этому образовывается самоиндукция. Предлагаем рассмотреть аномальные вихревые токи фуко, потоки воздуха, их определение, применение, влияние и как уменьшить потери на вихревые токи в трансформаторе.

Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве.

Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи.

Фото: Вихревые токи

Токи Фуко – это потоки, индукция которых проводится в проводящих частях разнообразных электрических приборах и машинах, блуждающие токи Фуко особенно опасны для пропуска воды или газов, т.к. их направление невозможно контролировать в принципе.

Если индуцированные встречные токи создаются изменяющимся магнитным полем, то токи вихревые будут перпендикулярны к магнитному полю, и их движение будет производиться по кругу, если данное поле однородно. Эти индуцированные электрические поля очень сильно отличаются от электростатических электрических полей точечных зарядов.

Содержание статьи

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящегоферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе. Самый простой пример проявления токов Фуко в обыденной жизни – их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов.

В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

Что такое вихревые токи

Вихревые токиили токи Фуко́(в честь Ж.

Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводникахпри изменении пронизывающего их магнитного потока.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго(1786—1853) в 1824 г.

в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M.

Фарадеемс позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко(1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поляи по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы.

В соответствии с правилом Ленцаони выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфированияподвижных частей гальванометров, сейсмографов и др.

Читать еще:  Технологии утепления дома из бруса снаружи

Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритовсделало возможным изготовление этих проводников сплошными.

Значение

При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt Применение

Исследуя вихревые токи, Ж. Б. Л. Фуко обнаружил, что они вызывают нагрев проводника. Это явление широко используют в технике и различных отраслях промышленности.

Вот несколько примеров:

  1. индукционная кухонная плита. Достоинство устройства состоит в экономичности: энергия тратится сугубо на нагрев посуды с пищей, сама плита остается холодной. Требуется посуда из ферромагнитных материалов, то есть таких, к которым пристает магнит. Существуют такие разновидности чугуна и нержавейки, алюминиевую же посуду делают с ферромагнитным дном;
  2. индукционный отопительный котел. Достоинства – в простоте устройства. Теплообменник представляет собой трубу (в некоторых моделях — с сердечником), обмотанную проводом. Целостность его не нарушается, как в ТЭНовых котлах, потому протечки исключены. Поверхность нагрева имеет большую площадь: в этом качестве выступает весь теплообменник (находится в поле электромагнита);
  3. индукционные печи на металлургических и прочих заводах. Сталь и другие металлы загружаются в тигель и помещаются в поле переменного магнита. Выгода в том, что энергия тратится сугубо на нагрев материала, а не тигля;
  4. дегазация металлических частей вакуумных установок. Без данной процедуры достижение полного вакуума невозможно, поскольку в арматуре и других металлических элементах содержится небольшое количество газов, в условиях вакуума понемногу выделяющихся. Для принудительной дегазации требуется нагрев, а нагреть находящийся внутри установки металлический элемент можно только бесконтактным способом. На помощь приходят ЭИ и токи Фуко;
  5. поверхностная закалка металлических изделий. Требуется для упрочнения внешнего слоя при сохранении пластичности основной части детали. Пример — шестерни. Если закалить изделие полностью, оно станет хрупким и при нагрузках сломается.

Вихревые токи в магнитопроводе

Чтобы нагреть только поверхностный слой, токи Фуко используют в сочетании со скин-эффектом. Последний состоит в снижении плотности тока вблизи оси проводящего тела и возрастании ее у поверхности, что проявляется тем сильнее, чем выше частота тока.

Объясняется скин-эффект тем, что вектор напряженности создаваемого вихревыми токами поля направлен:

  • внутри детали — против наведенной (индуцированной) ЭДС;
  • на поверхности — в одну сторону с ней.

Скин-эффект имеет место и при протекании сгенерированного электростанцией высокочастотного тока по проводам. При этом сопротивление последних значительно увеличивается, поскольку работает только поверхностный слой.

Для борьбы используют такие меры:

  • применяют плоские и полые проводники;
  • наносят на поверхность токопроводящих жил металлы с меньшим сопротивлением (серебро, золото);
  • уменьшают шероховатость проводника (сокращается путь тока в поверхностном слое).

Другой способ применения основан на взаимодействии вихревых токов с вызывающим их магнитным полем.

Как уже говорилось, индукционный ток выбирает такой путь, чтобы производимое им магнитное поле максимально противодействовало индуцирующему (правило Ленца). В результате на движущееся в магнитном поле тело с низким электрическим сопротивлением (сила вихревых токов, как и всех остальных, обратно пропорциональна сопротивлению), действует тормозящая сила.

Тормозящая силу используют для:

  • торможения диска электросчетчика (повышается точность показаний);
  • демпфирования подвижных частей сейсмографов, гальванометров и прочих приборов;
  • торможения железнодорожных составов (в некоторых конструкциях).
Читать еще:  Как законсервировать на зиму фундамент

На взаимодействии индуцирующего электромагнитного поля и создаваемого токами Фуко основан вихретоковый метод контроля деталей из проводящих материалов — металлов и их сплавов, полупроводников, графита. Метод является не только неразрушающим, но и бесконтактным. Это позволяет значительно увеличить скорость продвижения исследуемых изделий.

Суть метода:

  1. деталь помещается в переменное магнитное поле, генерируемое одной или несколькими индукционными обмотками (вихретоковым преобразователем);
  2. создаваемое токами Фуко поле анализируется измерительной катушкой.

Сопротивление материала увеличится, если в изделии имеются:

  • трещины;
  • раковины;
  • утоньшение стенки;
  • коррозия и прочие дефекты, нарушающие однородность.

Вихревые токи и создаваемое ими электромагнитное поле будут отличаться от нормы, эта информация, как и данные о положении исследуемого объекта относительно вихретокового преобразователя, определяется путем замеров на выводах катушек:

  • напряжения;
  • сопротивления.

Методом проверяют состояние широкого спектра изделий:

  • крепежных элементов;
  • роликов подшипников;
  • труб;
  • проволоки;
  • рельс;
  • корпусов атомных реакторов и многих других.

Помимо дефектоскопии и дефектометрии метод вихретокового контроля используется в:

  • виброметрии;
  • толщинометрии (контроль вибраций);
  • структуроскопии (определение структурного состояния материала).

Открытие вихревых токов

Вихревые электрические токи были открыты французским ученым Араго Д.Ф. Ученый экспериментировал с медным диском и стрелкой, которая была намагничена.

Она крутилась вокруг диска, в какой-то момент времени он начал повторять движения стрелки. Тогдашние ученые объяснение явлению не нашли – это странное движение назвали «явление Араго». Загадка ждала своего времени.

Через несколько лет вопросом заинтересовался Максвелл Фарадей, на тот момент, открывший свой знаменитый закон электромагнитной индукции.

Согласно закону, М. Фарадей выдвинул предположение, что движимое магнитное поле имеет влияние на атомную металлическую решетку медного проводника.

Электрический ток, возникший в результате направленного движения электронов, всегда создает магнитное поле по всему периметру проводника. Детально описал вихревые токи, опираясь на работы Араго и Фарадея – физик-экспериментатор Фуко, откуда они и получили свое второе название.

Какова природа вихревых токов?

Замкнутые циклические токи способны возникать в проводниках, в тех случаях, когда магнитное поле вокруг этих проводников не стабильно, то есть постоянно меняющееся во времени или динамично вращающееся.

Таким образом, сила вихревого тока прямо зависит от скорости изменения магнитного потока, пронзающего проводник. Известно, что электроны в проводнике двигаются линейно вследствие разницы потенциалов, таким образом электрический ток прямо направлен.

Токи Фуко проявляют себя иначе и замыкаются прямо в теле проводника, образуя вихреобразные цикличные контуры. Они способны взаимодействовать с магнитным полем, вследствие действия которого они и возникли. (рис 1)

Вихревые токи в проводнике

На рисунке можно хорошо рассмотреть, как интересующие нас токи увеличиваются при повышении уровня индукции (показаны пунктирными направляющими) в середине катушки, которая подключена к переменному току.

Исследуя вихревые токи Фуко русский ученый Ленц сделал вывод, что собственное магнитное поле этих токов не дает магнитному потоку, причиной коих они и являются, изменится. Характер направления силовых линий вихревого электрического тока совпадает с вектором направления индукционного тока.

Значение и применение

В момент движения тела в создаваемых магнитных полях токи Фуко являются причиной физического замедления тела в этих полях. Эта способность давно реализована в конструкции бытового электросчетчика. Суть заключается в том, что замедляется алюминиевый диск, вращающийся под действием магнита. (рис2)

Рисунок изображает диск счетчика электрической энергии, где сплошной стрелкой указано направление вращения самого диска, а пунктирными – вихревые потоки


Эти же взаимодействия помогли реализовать идею создания насоса для перекачки расплавленных металлов. Токи Фуко провоцируют возникновение скин — эффекта. В результате их действия КПД проводника уменьшается, поскольку посредине сечения проводника ток фактические отсутствует, а преобладает на его периферии.

Для уменьшения потерь электроэнергии, особенно при передаче на длительные дистанции, используют многоканальный кабель, каждая жила в котором имеет свою изоляцию. Вихревые токи, а именно индукционные печи, сконструированные на их основе, нашли широкое применение в металлургии.

Их использую для плавки металлов, их перекачивания и закалки поверхности. А также свойства вихревых токов используются для замедления и остановки металлического диска в индукционных тормозах. В современных вычислительных приборах и аппаратах токи Фуко способствуют замедлению движущихся частиц.

Читать еще:  Выбор и обустройство фундамента для забора из кирпича

Причины снижения КПД трансформатора

Эффективность работы трансформатора не может быть равно 100%, так как энергия теряется при любых условиях.

Потери делятся на 2 вида:

  • в меди (намотке);
  • в стали (сердечнике).

В обмотке потери энергии создает сопротивление провода, преобразующее электрическую энергию в тепло. В стержне такой же процесс происходит из-за вихревых токов, возникающих под воздействием магнитного поля. Оно равно нулю на внутренних витках первичной обмотки, увеличивается до максимума на внешних, переходит на вторую обмотку и достигает нуля на ее внешних витках.

Справка! Потери напряжения равны квадрату вихревых токов.

Вихревой ток движется по кругу, поэтому не выходит за пределы проводника, создает собственное магнитное поле, которое (по закону Венца) мешает изменению поля, создавшего их. Если стержень цельный, он сильно нагревается, оборудование выходит из строя из-за перегрева изоляции обмоток.

История открытия явления

Впервые это явление открыл французский ученый Араго в двадцатых годах XIX века. На одной оси он установил медный диск, а над ним магнитную стрелку. Затем он начинал вращать стрелку, в результате чего диск тоже начинал вращаться.

Это явление получило название в честь ученого Араго. Когда Фарадей через несколько лет открыл закон электромагнитной индукции, он смог объяснить это явление. Вращаемое стрелкой магнитное поле приводит к появлению в диске вихревого тока, который и осуществлял его движение.

Более подробно исследованием этого явления занялся физик Фуко, который выявил нагревание металлических тел в результате воздействия на них магнитного поля. Российский физик Ленц также изучал и проводил эксперименты с вихревыми потоками. Он обнаружил, что они никак не влияют на изменение магнитного поля, от которого образовались.

Тангенциальный вихревой ток (ТЕС)

Тангенциальный вихретоковый контроль (ТЕС) – это еще один метод, основанный на магнитной индукции. Основное различие между касательным и обычным вихревым током состоит в том, что катушки ориентированы по касательной к поверхности. Учитывая, что вихревые токи создаются перпендикулярно поверхности, эта ориентация улучшает позиционирование и определение глубины дефектов по глубине.

Тангенциальный вихревой ток используется для обнаружения и определения характеристик трещин на поверхности в материалах из углеродистой стали. Эта технология в основном используется на сварных швах и в зоне термического влияния (ЗТВ). Тангенциальные вихревые токи также можно перегруппировать в массив для увеличения покрытия поверхности.

  • Конструкция зонда позволяет сканировать сварную крышку;
  • Обнаружение и характеристика трещин в углеродистой стали;
  • Расширение охвата за более короткое время проверки при использовании многоэлементного датчика массива;
  • Запись данных;
  • Подходящая замена для MT и PT;
  • Нет сцепления или подготовки поверхности не требуется.

Практическое применение вихревых токов

Прохождение сильного тока повышает энергетический потенциал молекулярной решетки, что сопровождается нагревом. Это явление объясняет возможность использования соответствующей технологии для бесконтактного повышения температуры проводящих материалов. Если приводить пример с индукционной варочной панелью, можно подчеркнуть следующие плюсы:

  • образование тепла в глубине дна посуды обеспечивает эффективный нагрев рабочей зоны;
  • температура на поверхности панели не повышается чрезмерно;
  • тепловое воздействие на продукты выполняется быстрее, по сравнению с аналогами (спиральные ТЭНы, газовые плиты).

Привести пример на основе опыта с вращением диска несложно. Этот же принцип реализован в конструкции электромеханического счетчика потребленной энергии. В данном случае вращение рабочего узла обеспечивается наведенными токами. Ускорение/ замедление соответствует изменению мощности в нагрузке.

При тщательном изучении тематических вопросов можно найти определенные минусы. Электромагнитный поток в цельном сердечнике трансформатора способен увеличить энергетические потери. По этой причине соответствующие детали создают из комплекта пластин, покрытых слоем диэлектрика. Эти элементы соединяют изолированным стержнем.

Как определить в трансформаторе

Узнать, где находятся вихревые токи в трансформаторе, несложно. Как правило, они располагаются в трансформаторных сердечниках. Когда замыкаются в сердечниках, то нагревают их и создают энергию. Поскольку появляются в плоскостях, которые перпендикулярны магнитному потоку по характеристике, происходит трансформаторное уменьшение сердечников.

Обратите внимание! Для их измерения используются изолированные стальные пластины.

Определение в трансформаторе

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
Для любых предложений по сайту: [email protected]