Vdomvse.ru

Ремонт и Стройка
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как рассчитать мощность электрического тока

Как рассчитать мощность электрического тока?

Большинство бытовых приборов, подключаемых к сети, характеризуются таким параметром, как электрическая мощность устройства. С физической точки зрения мощность представляет собой количественное выражение совершаемой работы. Поэтому для оценки эффективности того или иного устройства вам необходимо знать нагрузку, которую он будет создавать в цепи. Далее мы рассмотрим особенности самого понятия и как найти мощность тока, обладая различными характеристиками самого устройства и электрической сети.

В соответствии с названием, величину данного параметра определяют мгновенные значения измеряемых величин. Основное определение можно рассмотреть с учетом перемещения единичного элементарного заряда (q), которое выполняется за время Δt. На выполнение работы будет затрачена мощность эл тока PF1-F2 = U/ Δt или (U/ Δt) * q = U * (q/ Δt) c учетом перемещаемого заряда. Так как ток по стандартному определению равен заряду, который переходит из F1 в F2 (I = q/ Δt), несложно вывести итоговую формулу:

Принимая бесконечно малым интервал времени, можно получить соответствующее определение мощности для участка цепи:

Аналогичные выводы делают с учетом соответствующей величины сопротивления:

P (t) = (I (t))2 * R = (U(t))2/ R.

К сведению. Из последних формул понятно, что сопротивление не зависит от времени.

Мощность электрического тока. Виды и работа. Особенности

Мощность электрического тока — это количество работы, которая выполняется за определенный период. Так как работа представляет параметр изменения энергии, то мощность можно назвать характеристикой скорости передачи либо преобразования электроэнергии. С мощностью электротока человеку приходится сталкиваться и в быту и на производстве, где применяются электрические приборы. Каждый из них потребляет электроток, поэтому при их использовании всегда необходимо учитывать возможности этих приборов, в том числе заложенные в них технические характеристики.

Мощность электрического прибора имеет важнейшее значение, ведь данный показатель используется не только для расчета электрической проводки, автоматов и предохранителей, но и для решения других задач. Чем мощность электрического прибора будет больше, тем за более короткое время он сможет осуществить необходимую работу. Если сравнить между собой электрическую плитку, тепловую электропушку или электрокамин, то у них у всех разные показатели мощности. То есть они будут обогревать площадь помещения за совершенно разное время.

Виды
Мощность электрического тока также может быть вычислена по формуле:

P=A/t, которая характеризует интенсивность передачи электроэнергии, то есть работа, совершаемая током по перемещению зарядов за определенный период времени.

Здесь A – это работа, t — время, за которое работа была выполнена.

Мощность может быть двух видов: реактивной и активной.

При активной мощности осуществляется преобразование мощности электротока в энергию движения, тепла, света и иные виды. Данный перевод тока в указанные виды невозможно выполнить обратно. Активная мощность измеряется в ваттах. Один ватт равняется один Вольт умноженный на один ампер. Для бытового и производственного применения задействуются показатели на порядок больших значений: это мегаватты в киловатты.

Реактивная мощность электрического тока представляет электронагрузку, создаваемую в приборах посредством емкостной и (или) индуктивной нагрузкой.

В случае переменного тока, указанный параметр характеризуется формулой:

Q=UIsinφ

Здесь синус φ выражается сдвигом фаз, который образуется между снижением напряжения и действующим электротоком. Значение угла может находиться в пределах от 0 до 90 градусов или от 0 до -90 градусов.

Параметр Q характеризует реактивную мощность, ее можно измерить в вольт-амперах. При помощи указанной формулы можно быстро определить мощность электротока.

Реактивные и активные показатели мощности можно продемонстрировать на обычном примере: Прибор может одновременно иметь нагревающие элементы: электрический двигатель и ТЭН. На изготовление ТЭНов применяется материал, который обладает большим сопротивлением, вследствие чего при прохождении по нему тока, электроэнергия становится тепловой. В данном случае довольно-таки точно характеризуется активная мощность электротока. Если брать за основу электродвигатель то внутри него располагается обмотка из меди, которая обладает индуктивностью, что, как правило, также вызывает эффект самоиндукции.

Эффект самоиндукции обеспечивает некоторое возвращение электроэнергии непосредственно в электросеть. Данную энергию можно охарактеризовать определенным смещением в показателях по электротоку и напряжению, что приводит к нежелательным последствиям на сеть в качестве определенных перегрузок. Подобными показателями выделяются и конденсаторы вследствие собственной емкости в момент, когда весь собранный заряд направляется обратно.

В данном случае происходит смещение тока и напряжения, но в обратном перемещении. Энергия индуктивности и емкости, которые смещаются по фазе относительно параметров электрической сети и называется реактивной электромощностью. Именно обратный эффект к сдвигу фазы позволяет осуществить компенсирование мощности реактивного параметра. В результате повышается качество и эффективность электрического снабжения.

Полная мощность электрического тока характеризуется величиной, которая соответствует произведению тока и напряжения и связана с активной и реактивной мощностью следующим уравнением:

S=˅P2+Q2

Где S – полная мощность, вычисляемая корнем из произведений квадратов активной и реактивной мощностей.

Для простоты восприятия активная мощность есть там, где присутствует активная нагрузка, к примеру, спиральные нагреватели, сопротивление проводов и тому подобное. Реактивная мощность наблюдается там, где имеется реактивная нагрузка, то есть элементы индуктивности и емкости, к примеру, конденсаторы.

Принцип действия

Когда заряд движется по проводнику, то электромагнитное поле выполняет над ним работу. Данная величина характеризуется напряжением. Заряды направляются в сторону снижения потенциалов, однако для поддержания указанного процесса необходим некоторый источник энергии. Напряжение по своему показателю соответствует работе поля, которое необходимо для перемещения единичного заряда Кулона на рассматриваемом участке. При перемещении заряда возникают явления, при которых электроэнергия может приходить в другие виды энергии.

Читать еще:  Создание фундамента под баню

Для доставки электроэнергии от электростанции до конечного потребителя необходимо выполнить определенную работу. Для создания требуемого напряжения, то есть возможности выполнения работы электротока по перемещению заряда, применяется трансформатор. Данное устройство производит увеличение показателя напряжения. Полученный ток под высоким напряжением, иногда достигающим 10 тысяч Вольт, движется по высоковольтным проводам. При достижении места назначения, он попадает на трансформатор, который уменьшает напряжение до промышленных или бытовых показателей. Далее ток направляется на производства, в квартиры и дома.

Применение
Одним из основных элементов электроцепи является приемник электроэнергии. Именно электрические приемники служат для преобразования электроэнергии в другие виды энергии:
  • Механическую: электрические двигатели и магниты.
  • Тепловую: агрегаты для сварки, электрические плитки, печки для выпечки хлеба, керамические печи и тому подобное;
  • Световую: лампочки накаливания, светодиодные, неоновые лампы и так далее.
  • Химическую: гальванические ванны и тому подобное.

Указанные преобразования возможны лишь в том случае, если ток проходит через сопротивление необходимого уровня. То есть при перемещении зарядов по проводнику наблюдается потеря энергии, что как раз и вызвано наличием сопротивления. Если рассматривать это дело на атомарном уровне, то электроны сталкиваются с ионами кристаллической решетки. Это приводит к возбуждению и теп­ловому движению, вследствие чего происходит потеря энергии.

Особенности

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу, то есть за определенное время. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Поэтому так важно знать мощности электрических приборов, чтобы правильно подобрать сечение и материал проводов или не допускать одновременного включения в сеть приборов, имеющих большую мощность.

В качества примера можно привести следующие показатели:
  • Сетевой роутер требует 10-20 Вт.
  • Бытовой сварочный аппарат имеет мощность 1500-5500 Вт.
  • Стиральная машина потребляет мощность 350-2000 Вт.
  • Электрическая плитка имеет мощность 1000-2000 Вт.
  • Холодильник бытовой потребляет мощность 15-700 Вт.
  • Монитор жидкокристаллический имеет мощность 2-40 Вт.
  • Монитор с электролучевой трубкой потребляет 15-200 Вт.
  • Системный блок ПК потребляет 100-1200 Вт.
  • Электрический пылесос имеет мощность 100-3000 Вт.
  • Лампа накаливания бытовая – 25-200 Вт.
  • Электрический утюг – 300-2000 Вт.
Интересные особенности

Мощность электрического тока раньше благодаря Джеймсу Уатту измерялась в лошадиных силах. Однако в конце девятнадцатого века было решено присвоить мощности название Ватт, чтобы увековечить имя известного ученого и изобретателя. На тот период это случилось впервые, когда единице измерения присвоили имя ученого. Именно с этого времени пошла традиция присвоения имен ученых единицам измерения.

Мощность электрического тока молнии составляет порядка один ТераВатт, при этом происходит ее преобразование в световую и тепловую энергию. Температура внутри молнии при этом составляет 25 тысяч градусов. Молния способна ударять в одно и то же место. А согласно статистике молния попадает в мужчин примерно в 5 раз больше, чем в представителей женского пола.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ ( R_1 ) ​ в четыре раза меньше сопротивления резистора ​ ( R_2 ) ​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​ ( R_1 ) ​ в 3 раза больше сопротивления резистора ​ ( R_2 ) ​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ ( A_1 ) ​ и ​ ( A_2 ) ​ в этих проводниках за одно и то же время.

Читать еще:  Как заземлить электрооборудование?

1) ​ ( A_1=A_2 ) ​
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) ​ и ​ ( A_2 ) в этих проводниках за одно и то же время.

1) ​ ( A_1=A_2 ) ​
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Электрический ток и его мощность

Современная наука еще не может до конца объяснить природу электричества. Нам, впрочем, вполне достаточно представления о том, что электрический ток — это направленное движение электронов в проводнике. И что этот самый ток может совершать работу, например, вращать электродвигатель, нагревать электроплитку, давать свет. Эта работа является следствием того, что под действием электрического поля происходит перенос, перемещение электронов в проводнике, что тоже означает совершение некоторой работы.

Как вы помните, электрический ток характеризуется двумя основными параметрами: напряжением и силой тока.

Напряжение есть разность потенциалов между двумя полюсами источника тока при замкнутой электрической цепи.

Сила тока — это количество электричества, проходящего через поперечное сечение цепи в течение одной секунды.

Легко заметить, что оба термина «напряжение» и «сила тока» не являются первичными, они определяются через другие понятия, в данном случае — «потенциал» и «количество электричества». Но мы снова не будем углубляться в физические теории, ограничившись приведенными определениями, приняв их за первичные. В конце концов, нам важно только научиться применять эти понятия на практике.

Вы, конечно, знаете еще со школы, напряжение принято обозначать буквой U и единицей измерения напряжения является вольт (В). Сила тока измеряется в амперах (А) и обозначается латинской буквой I.

Как уже было сказано в предыдущей статье, способность производить работу характеризуется величиной, которая называется энергией. А отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени называется мощностью. Поскольку ток тоже может совершать работу, понятие мощности применимо и в этом случае.

Мощность постоянного электрического тока обозначается буквой P и вычисляется по формуле P=U*I, то есть является произведением напряжения на силу тока. То есть чем больше напряжение и сила тока, тем больше совершается работы в единицу времени, то есть больше мощность электрического тока. Мы не будем заниматься выяснением того, почему это именно так, примем это утверждение на веру (оно обосновано в физике и вы можете при желании найти это обоснование).

Единицей электрической мощности является ватт (Вт).

Один ватт — это мощность, которую развивает электрический ток величиной в один ампер при напряжении в один вольт.

Более крупными единицами мощности являются:

  • 1 киловатт (кВт) = 1000 Вт.
  • 1 мега ватт (МВт) = 1000 кВт.

Более мелкие единицы:

  • 1 милливатт (мвт) = 10 -3 Вт;
  • 1 микроватт (мквт) = 10 -6 Вт.

Мощность будет нам встречаться при оценке солнечных батарей, ветро-генераторов и других устройств, способных производить электрический ток.

Активная

Этот вид мощности электрического тока определяет работу, целиком затраченную на энергопреобразования. Пример – энергия, выделившаяся на нагрев сопротивления.

Формула расчета:

где «φ» – это угол, на который сдвинуты фазы между векторами тока и напряжения.

Показатели U и I при подстановке в формулическое выражение берутся среднеквадратичные.

Формулы для расчета мощности

Трехфазные цепи

Новичкам трехфазные цепи представляются сложными, на деле это более элегантное техническое решение. Даже электричество домом поставляют тремя линиями. Внутри подъезда делят по квартирам. Больше смущает то, что некоторые приборы на три фазы лишены заземления, нулевого провода. Схемы с изолированной нейтралью. Нулевой провод не нужен, ток возвращается источнику по фазным линиям. Разумеется, нагрузка здесь на каждую жилу повышенная. Требования ПУЭ отдельно оговаривают род сети. Для трехфазных схем вводятся следующие понятия, о которых нужно иметь представление, чтобы правильно посчитать мощность:

Читать еще:  Технология облицовки дома кирпичом своими руками

Трехфазная цепь с изолированной нейтралью

  • Фазным напряжением, током называют, соответственно, разницу потенциалов и скорость передвижения заряда меж фазой и нейтралью. Понятно, в оговоренном выше случае с полной изоляцией формулы будут недействительны. Поскольку нейтрали нет.
  • Линейным напряжением, током называют, соответственно, разницу потенциалов или скорость перемещения заряда меж любыми двумя фазами. Номера понятны из контекста. Когда говорят о сетях 400 вольт, подразумевают три провода, разница потенциалов с нейтралью равна 230 вольт. Линейное напряжение выше фазного.

Меж напряжением и током существует сдвиг фаз. О чем умалчивает школьная физика. Фазы совпадают, если нагрузка 100% активная (простые резисторы). Иначе появляется сдвиг. В индуктивности ток отстает от напряжения на 90 градусов, в емкости – опережает. Простая истина легко запоминается следующим образом (плавно подходим к реактивной мощности). Мнимая часть сопротивления индуктивности составляет jωL, где ω – круговая частота, равная обычной (в Гц), помноженной на 2 числа Пи; j – оператор, обозначающий направление вектора. Теперь пишем закон Ома: U = I R = I jωL.

Из равенства видно: напряжение нужно отложить вверх на 90 градусов при построении диаграммы, ток останется на оси абсцисс (горизонтальная ось Х). Вращение по правилам радиотехники происходит против часовой стрелки. Теперь очевиден факт: ток отстает на 90 градусов. По аналогии проведем сравнение для конденсатора. Сопротивление переменному току в мнимой форме выглядит так: -j/ωL, знак указывает: откладывать напряжение нужно будет вниз, перпендикулярно оси абсцисс. Следовательно, ток опережает по фазе на 90 градусов.

В реальности параллельно с мнимой частью присутствует действительная – называют активным сопротивлением. Проволока катушки представлена резистором, будучи свитой, приобретает индуктивные свойства. Поэтому реальный угол фаз будет не 90 градусов, немного меньше.

А теперь можно переходить к формулам мощности тока трехфазных цепей. Здесь линия формирует сдвиг фаз. Меж напряжением и током, и относительно другой линии. Согласитесь, без заботливо изложенных авторами знания факт нельзя осознать. Меж линиями промышленной трехфазной сети сдвиг 120 градусов (полный оборот – 360 градусов). Обеспечит равномерность вращения поля в двигателях, для рядовых потребителей безразличен. Так удобнее генераторам ГЭС – нагрузка сбалансированная. Сдвиг идет меж линиями, в каждой ток опережает напряжение или отстает:

  1. Если линия симметричная, сдвиги меж любыми фазами по току составляют 120 градусов, формула получается предельно простой. Но! Если нагрузка симметрична. Посмотрим изображение: фаза ф не 120 градусов, характеризует сдвиг меж напряжением и током каждой линии. Предполагается, включили двигатель с тремя равноценными обмотками, получается такой результат. Если нагрузка несимметрична, потрудитесь провести вычисления для каждой линии отдельно, затем сложить результаты воедино для получения общей мощности тока.
  2. Вторая группа формул приведена для трехфазных цепей с изолированной нейтралью. Предполагается, ток одной линии утекает по другой. Нейтраль отсутствует за ненадобностью. Поэтому напряжения берутся не фазные (не от чего отсчитывать), как предыдущей формулой, а линейные. Соответственно, цифры показывают, какой параметр следует взять. Повремените пугаться греческих букв – фазы меж двумя перемножаемыми параметрами. Цифры меняются местами (1,2 или 2,1), чтобы правильно учесть знак.
  3. В асимметричной цепи вновь появляются фазные напряжение, ток. Здесь расчет ведется отдельно для каждой линии. Никаких вариантов нет.

Формулы мощности тока

Линейные и фазные соотношения

Сейчас получила распространение практика подключения бытовых объектов к трехфазным электросетям.

Это обосновано по следующим причинам:

  • Значительное потребление электроэнергии. В этом случае подведение однофазной сети большой мощности будет очень нерационально по причине большого сечения кабеля и высокой материалоемкости трансформатора.
  • Наличие приборов, работающих от трех фаз. Реализация схемы подключения такого устройства к однофазной цепи не очень проста и чревата помехами, которые возникают, например, при старте асинхронного двигателя.

Существует два способа подключения трехфазных приборов – “звезда” и “треугольник”.

В цепях типа “звезда” линейные и фазные токи идентичны, а линейное напряжение больше фазного в 1,73 раза:

Эта формула объясняет известное соотношения напряжений для бытовых и низковольтных промышленных сетей частоты 50 Гц: 220 / 380 В (по новому ГОСТу: 230 / 400 В).

При соединении типа треугольник, наоборот, напряжение совпадает, а линейные токи больше фазных:

Эти формулы можно применять только при симметричной нагрузке фаз. Если потребление тока по кабелям отличается (несимметричный приемник), то расчеты проводят с использованием правил векторной алгебры, а возникающий выравнивающий ток компенсируют за счет нейтрального провода. Однако для сетей с подключенными бытовыми приборами такие случаи редки.

В каждом электрическом устройстве имеются потери, так как часть энергии преобразуется в другие формы. Например, у электродвигателей постоянного тока (ведь мы в теме о постоянном токе) часть полезной мощности расходится на преодоление трения; лампочка излучает не только свет, но и теплоту. Пэтому механическая мощность двигателя (полезная мощность) меньше, чем потребляемая им электрическая мощность. Чтобы численно представить отношение между указанной номинальной мощностью и выдаваеиой полезной мощностью(т.е. эффективной), используют понятие «коэффициент полезного действия»:

Эффективная и номинальная мощности измеряются в одинаковых величинах. Для КПД численное значение выражается либо безразмерной величиной до 1, либо в процентах. Так как потерь не избежать, то Рном всегда больше Рэф. Поэтому КПД не может достигнуть значения 1 (100%).
О работе и мощности в цепи переменного тока на следующей странице

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector