Vdomvse.ru

Ремонт и Стройка

15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Трансформаторы, их виды и назначение

Трансформаторы, их виды и назначение

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник. Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть. Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным.

Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

Что такое трансформатор

Чтобы правильно выбрать устройство, нужно знать, что это такое и как функционирует. Давайте разберемся в особенностях конструкции трансформатора ЛАТР.

Чтобы плавно отрегулировать напряжение переменного тока, частота которого составляет 50-60 Гц, используют трансформаторы. Эти устройства применяются также для повышения и понижения напряжения при работе строительных электроприборов или бытовых аппаратов.

Особенности конструкции трансформатора

Трансформатор представляет собой устройство, которое имеет две или более обмотки. Они связываются между собой индуктивно и преобразуют электрическую энергию по току или напряжению. Обмотка в аппаратуре может быть и одна, ленточная или проволочная катушка. Если их несколько, то они обхвачены общим магнитным потоком и намотаны на сердечник из мягкого материала.

Сегодня очень популярны однофазные автотрансформаторы или лабораторные автотрансформаторы (ЛАТРы). Это такой тип трансформатора, в котором несколько обмоток не изолируются друг от друга. Они соединены между собой напрямую и создают, таким образом, электрическую и электромагнитную связь. Общая обмотка разделяется на 3 или более выводов, если подключаться к разным выводам, то можно получить разное по показателям напряжение.

Преимущества трансформаторов

Трансформатор имеет более высокий КПД, поскольку не вся мощность преобразуется. Этот нюанс важен в той ситуации, когда напряжение на выходе и на входе несколько отличаются (незначительно).

Если говорить про автотрансформатор, то для его производства требуется меньше меди для обмотки, стали для сердечника, также его вес и параметры уменьшились. Это важно, так как сказывается на стоимости устройств.

Трансформатор имеет контакт-токосъем, подключенный к обмотке. Он подвижен и позволяет изменять число витков плавно. Поэтому напряжение на выходе можно выбрать в параметрах от нуля и до наибольшего показателя для конкретной модели.

Применение трансформаторов

Везде, где необходимо стабилизировать напряжение в электросети, могут применяться ЛАТРы. Особенно они распространены в различных лабораторных установках и оборудовании. Одно из самых важных требований к безопасной работе трансформатора является надежное заземление.

Согласно инструкции и правилам безопасности запрещается использовать ЛАТР, если снята защитная оболочка.

Трансформаторы не выдерживают короткого замыкания, поэтому их нельзя использовать в незащищенных сетях. Для правильной и долговечной эксплуатации следует защитить сеть плавким предохранителем или автоматом, который будет отклычать сеть, если ток будет больше 20 А.

По климатическим характеристикам допускается эксплуатация ЛАТРов при высоте 2000 метров над уровнем моря, но при этом ток нагрузки необходимо уменьшать на 2,5% при подъёме на каждые 500 м высоты.

Сегодня на рынке представлены модели автотрансформаторов со сроком службы 12 лет и более, при наработках на отказ не меньше 6250 часов. Положение автотрансформаторов ЛАТР во время эксплуатации может быть произвольным, режим работы продолжительным.

Купить автотрансформатор в нашем Интернет-магазине можно по выгодной цене. Мы напрямую с заводами-изготовителями, поэтому у нас вы приобретете товар без переплат. Кроме того, в регулярно обновляемом ассортименте – инверторы, электрогенераторы, мотопомпы и мотоблоки. Вся продукция по вашему желанию может быть доставлена в любую точку города или области в кратчайшие сроки.

Здесь мы размещаем полезную информацию товарах, статьи, обзоры, советы по выбору. Чтобы быстрее найти нужную информацию, выбирайте категорию или ищите по тегам. Не забудьте заглянуть в популярные статьи.

Виды трансформаторов

Двумя основными типами трансформаторов на дискретных компонентах являются трансформаторы, выполненные в виде сердечника с обмоткой или на линиях передачи. Кроме того, широко применяются компактные трансформаторы LTCC и MMIC.

Трансформаторы с сердечником и обмоткой изготавливаются путем наматывания проводника, как правило, медного провода с изоляцией, вокруг магнитного сердечника (тороида).

Вторичных обмоток может быть несколько. Иногда также имеется вывод средней точки для дополнительных функций. На рисунке 4 показан трансформатор с тороидальным магнитным сердечником и медной обмоткой с изоляцией. Благодаря природе индуктивных связей между обмоткой и сердечником трансформаторы меньшего размера работают быстрее. Например, путем подбора длины линии передачи обеспечивается согласование импедансов между двумя несогласованными нагрузками.

Рис. 4. Внешний вид трансформатора с проволочной обмоткой, намотанной на магнитный сердечник

Некоторые трансформаторы в линиях передачи представляют собой проводник с изоляцией, намотанный на ферритный сердечник. Они относятся к типу трансформаторов с обмоткой.

Трансформатор в линии передачи состоит из линии передачи с двумя проводниками. Первый подключен к генератору и нагрузке, второй – к выходу первой линии и земле (см. рис. 5). Протекающий через нагрузку ток в два раза превышает ток через генератор; напряжение V равно половине V1.

Рис. 5. Функциональная схема идеального трансформатора на линии передачи

Когда сопротивление нагрузки равно четверти сопротивления, видимого со стороны генератора, коэффициент преобразования равен 1:4:

Наиболее распространенной формой трансформатора на линиях передачи является четвертьволновой. В этой топологии характеристическое сопротивление обеспечивает согласование входного импеданса и импеданса нагрузки. Длина четвертьволнового трансформатора определяется рабочей частотой, а полоса пропускания ограничена октавой вокруг центральной частоты. На рисунке 6 показана линия передач без потерь с характеристическим импедансом Z и длиной L.

Рис. 6. Трансформатор на четвертьволновой линии передачи

Эта линия находится между входным импедансом ZIN и импедансом нагрузки ZL. Характеристический импеданс четвертьволновой линии передачи Z, обеспечивающий согласование ZIN и ZL, рассчитывается следующим образом:

Одним из преимуществ трансформаторов на линиях передачи является широкая полоса частот по сравнению с трансформаторами с сердечником и проволочной обмоткой. Это преимущество обеспечивается за счет меньшей паразитной емкости между витками и меньшей индуктивностью рас­сеяния.

Составные элементы и дополнительные узлы

Кроме обмоток и сердечника, трансформатор должен содержать такие комплектующие:

  • винт (вертикальный) с резьбой;
  • ручку для вращения винта;
  • ходовую гайку;
  • систему подвеса.

Вместе эти элементы образуют систему регуляции выходящего напряжения. Ручка вращает винт, перемещая шунт выше или ниже, понижая или повышая вторичное напряжение.

Кроме этого, на корпусе прибора должна быть решетка. Через нее внутрь попадает воздух, охлаждая трансформатор. Из корпуса выводятся изолированные провода с зажимами подачи тока на металлическую деталь и электрод. Также корпус обязательно заземляется.

Разные дополнительные узлы призваны улучшить работу устройства. Например, при выпрямлении напряжения используются конденсаторы для сглаживания пульсаций. Также могут применяться дополнительные вторичные обмотки, стабилизаторы импульса и фазорегуляторы.

Для расширения возможностей сварки вводят дополнительные элементы сопротивления. Они выводятся на отдельные переключатели и позволяют варить очень тонкие или толстые металлические листы.

Статьи

Назначение и применение

Трансформаторы – электротехнические устройства, широко применяемые как в производственной, так и в бытовой сфере. При этом различают категории трансформаторов напряжения и трансформаторов тока.

Установка трансформатора тока осуществляется с целью преобразования значений переменного тока с высоких на первичной обмотке до малых на вторичной, что обеспечивает удобство и безопасность эксплуатации. Их используют при подключении приборов учета расхода электроэнергии (электросчетчиков) и других электроизмерительных приборов, а также устройств, обеспечивающих релейную защиту различных систем электроэнергетики.

Устройство и правильное подключение

Важнейшими конструкционными элементами трансформатора являются первичная и вторичная обмотки, а также магнитопровод, заключенные в единый корпус. При этом первичная обмотка выполняется обычно в один виток (обмотка более точных устройств имеет два витка), или представляет собой проходящую сквозь специальное окно силовую шину (трансформатор шинного исполнения).

Первичная обмотка подключается к источнику тока, вторичная – непосредственно к измерительным приборам и другим потребителям, характеризуемым малым значениям внутреннего сопротивления.

С целью предотвратить неверное подключение и, как следствие, последующую неисправность трансформатора тока либо подключаемых устройств, выводы трансформаторов маркируются буквенными и цифровыми обозначениями, как это показано на нижеприведенной схеме. Начало и конец первичной обмотки обозначают как Л1 и Л2 (линия), а начало и конец вторичной обмотки — как И1 и И2 (измерение). Обмотку напряжения необходимо подключать к проводам «фаза» и «ноль». С этой целью между выводами Л1 и И1 устанавливают специальную перемычку, а нулевой провод подсоединяют к третьему зажиму.

Читать еще:  Технология возведения стен из пеноблоков

Трансформатора тока (общая схема)

В высоковольтных трансформаторах тока напряжением 6-10 кВ и более устанавливается несколько групп вторичных обмоток, к одной из которых подключают устройство защиты, а к прочим, более точным, – приборы учета или измерения.

Вторичные обмотки трансформаторов тока при установке в три фазы соединяют по методу «Звезды» (рис.1), при двухфазной установке – по схеме «Неполной звезды» (рис.2).

Чаще всего используются трансформаторы с номинальными значениями первичного тока от 50 до 2000 А. Показатель вторичного тока в большинстве случаев составляет 5А.

Меры профилактики

Правильное подключение трансформатора тока – залог нормальной работы оборудования.

Электромонтаж цепей тока и напряжения должен производиться сообразно Правилам Устройства Электроустановок. Согласно нормативным документам, сечение медного провода в токовых цепях должно быть не менее 2,5 кв. мм, в цепях напряжения — не менее 1,5 кв.мм.

Вторичные цепи трансформаторов тока должны в обязательном порядке быть заземлены. Это обеспечивает как сохранность самих приборов, так и безопасность людей.

Особенности эксплуатации

Каждый из трансформаторов тока должен обязательно подвергаться периодическим поверкам госповерителя и иметь на корпусе пломбу с соответствующим клеймом, а также отметку в техническом паспорте. Необходимо помнить об этом при установке нового трансформатора, следя за тем, чтобы на момент монтажа дата последующей госповерки не была просрочена. Поверка должна производиться регулярно, с интервалом в четыре-пять лет, в зависимости от марки трансформатора и его типа.

Принадлежность трансформатора к определенному классу предопределяет применение методики и установочного инструментария. Вместе с тем первичная установка или замена трансформатора тока регламентированы обязательными условиями работ, которые предусматривают соблюдение той или иной схемы подключения. Такие схемы могут различаться в зависимости от требований организации, на которую производителем и поставщиком возложены вопросы компетенции в сфере генерации и доставки электроэнергии потребителям. В частности, ряд определенных различий имеют схемы подключения от Ленэнерго и Сбытовой компании.

Петербургская сбытовая компания

Самый простой и одновременно наиболее надежный вариант установки трансформатора в бытовых условиях — вызов электрика на дом. Это позволит, не нарушая нормативные требования, квалифицированно и в точном соответствии со всеми предписаниями выполнить весь комплекс монтажных и электротехнических работ.

Компания ЭлектроТехников предлагает Вам любые электромонтажные работы начиная с установки осветительных систем и заканчивая работами по автоматизации технических процессов:

Замена эл. счетчика

Ремонт проводки ( замена проводки )

Установка эл. щита ( установка распределительного щита )

Установка розеток ( перенос розеток )

Проводка в квартирах ( проводка в коттеджах )

Схемы групп соединения обмоток 3ф. 2обм. трансформаторов

Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.

Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.

12 группа (Y/Y-12, Д/Д-12)

Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12

11 группа (Y/Д-11, Д/Y-11)

Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11

10 группа (Д/Д-10, Y/Y-10)

Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10

9 группа (Y/Д-9, Д/Y-9)

Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9

8 группа (Y/Y-8, Д/Д-8)

Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8

7 группа (Y/Д-7, Д/Y-7)

Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7

6 группа (Y/Y-6, Д/Д-6)

Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6

5 группа (Y/Д-5, Д/Y-5)

Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5

4 группа (Y/Y-4, Д/Д-4)

Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4

3 группа (Y/Д-3, Д/Y-3)

Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3

2 группа (Y/Y-2, Д/Д-2)

Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2

1 группа (Y/Д-1, Д/Y-1)

Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1

Укажем некоторые особенности отдельных схем:

Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;

Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.

Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;

Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.

Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.

Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.

Сохраните в закладки или поделитесь с друзьями

Элементы конструкции силовых трансформаторов

Мощный трансформатор высокого напряжения представляет собой сложное устройство, состоящее из большого числа конструктивных элементов, основными из которых являются: магнитная система (магнитопровод), обмотки, изоляция, выводы, бак, охлаждающее устройство, механизм регулирования напряжения, защитные и измерительные устройства, тележка.

Магнитная система

В магнитной системе проходит магнитный поток трансформатора (отсюда название «магнитопровод»). Магнитопровод является конструктивной и механической основой трансформатора. Он выполняется из отдельных листов электротехнической стали, изолированных друг от друга. Качество электротехнической стали влияет на допустимую магнитную индукцию и потери в магнитопроводе.

В течение многих лет применялась горячекатаная сталь ЭЧ1, ЭЧ2 с толщиной листов 0,5-0,35 мм, допускающая индукцию 1,4-1,45 Тл, с удельными потерями 2,5-3,5 Вт/кг. В настоящее время применяется холоднокатаная текстурованная сталь марок 3405, 3406, т.е. сталь с определенной ориентировкой зерен, допускающая индукцию до 1,7 Тл, с удельными потерями 0,9-1,1 Вт/кг. Применение такой стали позволило значительно уменьшить сечение магнитопровода за счет большей допустимой магнитной индукции, уменьшить диаметр витков обмотки, уменьшить массу и габариты трансформаторов. Масса трансформаторов на единицу мощности в 1930г. достигала 3,33 т/(МВА), а в настоящее время 0,74 т/(МВА).

Уменьшение удельных потерь в стали, тщательная сборка магнитопровода, применение бесшпилечных конструкций, соединение стержней с ярмом с помощью косой шихтовки позволяют уменьшить потери холостого хода и ток намагничивания трансформатора. В современных мощных трансформаторах ток намагничивания составляет 0,5-0,6% Iном, тогда как в трансформаторе с горячекатаной сталью ток достигал 3%; потери холостого хода уменьшились вдвое.

Листы трансформаторной стали должны быть тщательно изолированы друг от друга. Первоначально применялась бумажная изоляция — листы оклеивались с одной стороны тонким слоем специальной бумаги. Бумага создает потную электрическую изоляцию между листами, но легко повреждается при сборке и увеличивает размеры магнитопровода. Широко применяется изоляция листов лаком с толщиной слоя 0,01 мм. Лаковая пленка создает достаточно надежную изоляцию между листами, обеспечивает хорошее охлаждение магнитопровода, обладает высокой нагревостойкостью и не повреждается при сборке. Последнее время все шире применяется двустороннее жаростойкое покрытие листов стали, наносимое на металлургическом заводе после проката. Толщина покрытия меньше 0,01 мм, что обеспечивает лучшие свойства магнитной системы. Стяжка стержней осуществляемся стеклобандажами, ярм — стальными полу бандажами или бандажами.

Магнитопровод и его конструктивные детали составляют остов трансформатора. На остове устанавливают обмотки и крепят проводники, соединяющие обмотки с вводами, составляя активную часть.

Рис.1. Обмотки трансформатора:
а — концентрическая, б — чередующаяся

Обмотки трансформаторов

Обмотки трансформаторов могут быть концентрическими и чередующимися. В первом случае обмотки НН и ВН выполняют в виде цилиндров и располагают на стержне концентрически одна относительно другой (рис.1,а). Такое выполнение принято в большинстве силовых трансформаторов. Во втором случае обмотки ВН и НН выполняются в виде невысоких цилиндров с одинаковыми диаметрами и располагаются на стержне одна над другой (рис.1,б). В такой обмотке значительное число паек, она менее компактна и применяется для специальных электропечных трансформаторов или для сухих трансформаторов, так как обеспечивает лучшее охлаждение обмоток.

Обмотки трансформаторов должны обладать достаточной электрической и механической прочностью. Изоляция обмоток и отводов от нее должна без повреждений выдерживать коммутационные и атмосферные перенапряжения. Обмотки должны выдерживать электродинамические усилия, которые появляются при протекании токов КЗ. Необходимо предусмотреть надежную систему охлаждения обмоток, чтобы не возникал недопустимый перегрев изоляции.

Читать еще:  Коптильня на даче из кирпича

Для проводников обмотки используются медь и алюминий. Как известно, медь имеет малое электрическое сопротивление, легко поддается пайке, механически прочна, что и обеспечило широкое применение меди для обмоток трансформаторов. Алюминий дешевле, обладает меньшей плотностью, но большим удельным сопротивлением, требует новой технологии выполнения обмоток. В настоящее время трансформаторы с алюминиевой обмоткой изготовляются на мощность до 6300 кВА.

В современных трансформаторах для обмотки применяется транспонированный провод, в котором отдельные проводники в параллельном пучке периодически изменяют свое положение. Это выравнивает сопротивление элементарных проводников, увеличивает механическую прочность, уменьшает толщину изоляции и размеры магнитопровода.

Изоляция трансформатора

Изоляция трансформатора является ответственной частью, так как надежность работы трансформатора определяется в основном надежностью его изоляции.

В масляных трансформаторах основной изоляцией является масло в сочетании с твердыми диэлектриками: бумагой, электрокартоном, гетинаксом, деревом (маслобарьерная изоляция).

Значительный эффект дает применение изоляции из специально обработанной бумаги (стабилизированной), которая менее гигроскопична, имеет более высокую электрическую прочность и допускает большой нагрев. В сухих трансформаторах широко применяются новые виды изолирующих материалов повышенной нагревостойкости на основе кремнийорганических материалов.

Активную часть трансформатора вместе с отводами и переключающими устройствами для регулирования напряжения помещают в бак. Основные части бака — стенки, дно и крышка. Крышку используют для установки вводов, выхлопной трубы, крепления расширителя, термометров и других деталей. На стенке бака укрепляют охладительные устройства — радиаторы.

В трансформаторах небольшой мощности бак выполняется с верхним разъемом: при ремонтах необходимо снять крышку трансформатора, а затем поднять активную часть из бака.

Если масса активной части более 25т, то она устанавливается на донную часть бака, а затем накрывается колоколообразной верхней частью бака и заливается маслом. Такие трансформаторы с нижним разъемом не нуждаются в тяжелых грузоподъемных устройствах для выемки активной части, так как при ремонтах после слива масла поднимается верхняя часть бака, открывая доступ к обмоткам и магнитопроводу.

Для уменьшения потерь от потоков рассеяния стальные баки экранируются с внутренней стороны пакетами из электротехнической стали или пластинами из немагнитных материалов (медь, алюминий).

Расширитель трансформатора

Расширитель трансформатора представляет собой цилиндрический сосуд, соединенный с баком трубопроводом и служащий для уменьшения площади соприкосновения масла с воздухом. Бак трансформатора полностью залит маслом, изменение объема масла при нагреве и охлаждении приводит к колебанию уровня масла в расширителе; при этом воздух вытесняется из расширителя или всасывается в него. Масло очень гигроскопично, и если расширитель непосредственно связан с атмосферой, то влага из воздуха поступает в масло, резко снижая его изоляционные свойства. Для предотвращения этого расширитель связан с окружающей средой через силикагелевый воздухоосушитель. Силикагель поглощает влагу из всасываемого воздуха. При резких колебаниях нагрузки силикагелевый фильтр полностью не осушает воздух, поэтому постепенно влажность воздуха в расширителе повышается. Для предотвращения этого применяются герметичные баки с газовой подушкой из инертного газа или свободное пространство в расширителе заполняется инертным газом (азотом), поступающим из специальных эластичных емкостей. Возможно применение специальной пленки — мембраны на границе масло-воздух. Осушение воздуха в расширителе осуществляют термовымораживателями.

К баку трансформатора крепится термосифонный фильтр, заполненный силикагелем или другим веществом, поглощающим продукты окисления масла. При циркуляции масла через фильтр происходит непрерывная регенерация его.

Рис.2. Трансформатор трехфазный трехобмоточный ТДТН-16000-110-80У1
1 — бак, 2 — шкаф автоматического управления дутьем, 3 — термосифонный фильтр,
4 — ввод ВН, 5 — ввод НН, 6 — ввод СН, 7 — установка трансформаторов тока 110 кВ,
8 — установка трансформаторов тока 35 кВ, 9 — ввод 0 ВН, 10 — ввод 0 СН,
11 — расширитель, 12 — маслоуказатель стрелочный, 13 — клапан предохранительный,
14 — привод регулятора напряжения, 15 — электродвигатель системы охлаждения,
16 — радиатор, 17 — каретка с катками

Для контроля за работой трансформатора предусматриваются контрольно-измерительные и защитные устройства. К контрольным устройствам относятся маслоуказатель и термометры. Маслоуказатель устанавливается на расширителе, термометр — на крышке бака. К защитным устройствам относятся реле понижения уровня масла и газовое реле.

На мощных трансформаторах 330-750 кВ дополнительно применяются устройства контроля изоляции вводов (КИВ) и манометры, контролирующие давление масла в герметичных вводах ВН. Основные конструктивные узлы трансформаторов показаны на рис.2.

Трансформатор представляет собой устройство, которое преобразовывает напряжение переменного тока (повышает или понижает). Состоит трансформатор из нескольких обмоток (двух или более), которые намотаны на общий ферромагнитный сердечник.

Если трансформатор состоит только из одной обмотки, то он называется автотрансформатором. Современные трансформаторы тока бывают: стержневыми, броневыми или тороидальными. Все три типа трансформаторов имеют похожие характеристики, и надежность, но отличаются друг от друга способом изготовления.

В трансформаторах стержневого типа обмотка намотана на сердечник, а в трансформаторах стержневого типа обмотка включается в сердечник. В трансформаторе стержневого типа обмотки хорошо видны, а из сердечника видна только нижняя и верхняя часть.

Сердечник броневого трансформатора скрывает в себе практически всю обмотку. Обмотки трансформатора стержневого типа расположены горизонтально, в то время как это расположение в броневом трансформаторе может быть как вертикальным, так и горизонтальным. Независимо от типа трансформатора, в его состав входят такие три функциональные части: магнитная система трансформатора (магнитопровод), обмотки, а также система охлаждения.

Схематичный рисунок опорного трансформатора тока:

Это устройство, первичная обмотка которого последовательно включена в рабочую цепь, а вторичная служит для проведения измерений. Подобные устройства используются не только в лабораториях для оценки величин. Истинное место трансформаторов тока возле электростанций, где они помогают контролировать режимы, внося коррективы в процесс эксплуатации оборудования.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Область применения

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Трансформаторы тока принято классифицировать по роду тока. Измеряемое напряжение различается по роду. Для проведения измерений в цепи постоянного тока используется нарезка сигнала на импульсы. Напрямую трансформация невозможна:

  • для переменного тока;
  • для постоянного тока.

По назначению: мы уже сказали, что часто трансформаторы тока применяются для измерений (к примеру, кВт ч). Называют системы, где требуется защитить персонал для повышения безопасности.

Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования. Трансформаторы делят в зависимости от назначения. Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

Принцип работы устройства

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток, выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток. Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1, U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек, либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией.

Микротрансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги. Подробнее принцип работы трансформатора тока рассмотрен в видеоролике:

Читать еще:  Как самостоятельно проложить канализационные трубы?

Вкратце принцип работы и устройство трансформатора тока заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления.

Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.

Режимы работы трансформатора

Существуют такие три режима работы трансформатора: холостой ход, режим короткого замыкания, рабочий режим. Трансформатор «на холостом ходу», когда выводы от вторичных обмоток никуда не подключены.

Если сердечник трансформатора изготовлен из магнитомягкого материала, тогда ток холостого хода показывает, какие в трансформаторе происходят потери на перемагничивание сердечника и вихревые токи.

В режиме короткого замыкания выводы вторичной обмотки соединены между собой накоротко, а на первичную обмотку подают небольшое напряжение, с таким расчетом, чтобы ток короткого замыкания был равен номинальному току трансформатора.

Величину потерь (мощность) можно посчитать, если напряжение во вторичной обмотке умножить на ток короткого замыкания. Такой режим трансформатора находит свое техническое применение в измерительных трансформаторах.

Схема режима работы трансформатора тока:

Если подключить нагрузку к вторичной обмотке, то в ней возникает ток, индуцирующий магнитный поток, направленный противоположно магнитному потоку в первичной обмотке. Теперь в первичной обмотке ЭДС источника питания и ЭДС индукции питания не равны.

Поэтому ток в первичной обмотке увеличивается до тех пор, пока магнитный поток не достигнет прежнего значения. Для трансформатора в режиме активной нагрузки справедливо равенство: U_2/U_1 =N_2/N_1

где U2, U1 – мгновенные напряжения на концах вторичной и первичной обмоток, а N1, N2 – количество витков в первичной и вторичной обмотке.

Если U2> U1, трансформатор называется повышающим, в противном случае перед нами понижающий трансформатор. Любой трансформатор принято характеризовать числом k, где k – коэффициент трансформации.

Виды и типы трансформаторов

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на несколько видов.

  1. Автотрансформаторы.
  2. Импульсные трансформаторы.
  3. Разделительный трансформатор.
  4. Пик-трансформатор.

Стоит выделить способ классификации трансформаторов по способу их охлаждения. Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Сравнительные характеристики различных видов трансформаторов:

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели, где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того, производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией. Трансформаторы тока имеют три основных вида. Наиболее применяемые из них:

  1. Сухие.
  2. Тороидальные.
  3. Высоковольтные (масляные, газовые).

У сухих трансформаторов первичная обмотка без изоляции. Свойства тока во вторичной обмотке зависят от коэффициента преобразования.

Тороидальные исполнения трансформаторов устанавливают на шины или кабели. Поэтому первичная обмотка для них не нужна, в отличие от обычных трансформаторов напряжения и тока. Первичный ток протекает по шине, которая проходит в центре трансформатора. Он дает возможность вторичной обмотке фиксировать показатели тока.

Такие трансформаторы тока редко используются для замера параметров тока, так как их надежность и точность измерений оставляет желать лучшего. Они чаще используются для дополнительной защиты от короткого замыкания.

Характеристики трансформаторов

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

Принцип работы трансформатора тока:

Параметры трансформаторов тока

При выборе для работы в тандеме с трёхфазным счётчиком первым делом обращают внимание на коэффициент трансформации. Ряд значений стандартизирован, и нужно выбирать приборы, способные работать в паре. Выше говорилось, что в иных случаях коэффициент трансформации возможно менять, и нужно этим пользоваться.

Помимо рабочего напряжения роль играет ток в первичной обмотке (исследуемой сети). Понятно, что с ростом увеличивается нагрев, и однажды токонесущая часть может сгореть. Это требование не столь актуально для трансформаторов без первичной обмотки. Номинальный вторичный ток обычно равен 1 либо 5 А, что служит критерием для согласования с сопрягаемыми устройствами.

Полагается обращать внимание на сопротивление нагрузки в цепи измерения. Вряд ли найдётся счётчик, выбивающийся из общего ряда, но нужно контролировать момент. В противном случае не гарантируется точность показаний. Коэффициент нагрузки обычно не ниже 0,8.

Это уже касается измерительных приборов, с индуктивностями в составе. ГОСТ нормирует значение в вольт-амперах. Для получения сопротивления в омах требуется поделить цифру на квадрат тока вторичной обмотки.

Предельные режимы работы обычно характеризуются током электродинамической стойкости, возникающим при коротком замыкании. В паспорте пишут значение, при котором прибор проработает сколь угодно долго без выхода из строя.

В условиях короткого замыкания ток столь силен, что начинает оказывать механическое воздействие. Порой вместо тока электродинамической стойкости указывается кратность его к номинальному.

Остаётся лишь произвести операцию умножения. Указанный параметр не касается приборов без первичной обмотки. Вдобавок определяется ток термической стойкости, который трансформатор выдерживает без критического перегрева. Этот вид устойчивости способен выражаться кратностью.

Отличие трансформатора тока от трансформатора напряжения

Одним из некоторых отличий является способ создания изоляции между двумя обмотками. Первичную обмотку в трансформаторах тока изолируют соответственно параметрам принимаемого напряжения. Вторичная обмотка имеет заземление.

Трансформаторы тока работают в условиях, подобных к случаю короткого замыкания, так как у них небольшое сопротивление вторичной обмотки. В этом и заключается назначение трансформаторов, измеряющих ток, а также отличие от трансформатора напряжения по условиям работы.

Для трансформатора напряжения при коротком замыкании его работа опасна из-за риска возникновения аварии. Для трансформатора тока такой режим работы вполне приемлемый и безопасный. Хотя бывают у таких трансформаторов также угрозы аварии, но для этого устанавливают свои системы и средства защиты.

Виды трансформаторов напряжения

Существует довольно много трансформаторов напряжения. Их функции соответствуют определенному назначению. Поэтому, прежде чем выбирать тот или иной вариант трансформатора, необходимо определиться, для чего он нужен. Все разнообразие этих приборов отличается друг от друга конструкцией, которая и определяет особенности их эксплуатации.

Все ТН условно делятся на виды по определенным критериям:

Число фаз: одно- и трехфазные.

Количество обмоток – две или три.

Класс точности – диапазон допустимых параметров погрешности.

Тип охлаждения – масляные и сухие (воздушное охлаждение).

Способ размещения – внутренние или внешние.

ТН делятся также на группы согласно сферам применения и особенностям эксплуатации:

Заземляемый. Этот вариант представляет собой однофазное или трехфазное устройство. Один из его концов должен быть заземлен – это нейтраль обмотки. В маркировках этих моделей присутствует буква «З», например, ЗНОЛ, ЗНОМ.

Наземляемый. Он не нуждается в заземлении. Обязательно изолируются все уровни, зажимы. В зависимости от уровня напряжения, трансформатор может монтироваться на определенной высоте.

Каскадный. Его основная часть первичная обмотка, состоящая из нескольких секций. Они расположены на разном расстоянии от земли в виде каскада. Все части трансформатора соединены между собой дополнительными обмотками. Особенностью каскадных трансформаторов является то, что с увеличением числа элементов, увеличивается количество погрешностей в работе всей системы.

Емкостный. У этого прибора в отличие от других есть емкостный делитель. Этот вид устройств является пассивным, так как не добавляет мощности. Но хорошо справляется с контролем проходящей энергии по сети и выдает высокий КПД.

Двухобмоточный. Имеет две обмотки. Он может преобразовывать одно напряжение U1 в другое U2.

Трехобмоточный. Имеет кроме первичной обмотки еще две вторичные. Отлично заменяет два двухобмоточных прибора, что выгодно с точки зрения экономии затрат на приобретение электрооборудования.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
Для любых предложений по сайту: [email protected]